An Improved Real-time Denoising Method Based on Lifting Wavelet Transform
نویسندگان
چکیده
Signal denoising can not only enhance the signal to noise ratio (SNR) but also reduce the effect of noise. In order to satisfy the requirements of real-time signal denoising, an improved semisoft shrinkage real-time denoising method based on lifting wavelet transform was proposed. The moving data window technology realizes the real-time wavelet denoising, which employs wavelet transform based on lifting scheme to reduce computational complexity. Also hyperbolic threshold function and recursive threshold computing can ensure the dynamic characteristics of the system, in addition, it can improve the real-time calculating efficiency as well. The simulation results show that the semisoft shrinkage real-time denoising method has quite a good performance in comparison to the traditional methods, namely soft-thresholding and hard-thresholding. Therefore, this method can solve more practical engineering problems.
منابع مشابه
ECG denoising on bivariate shrinkage function exploiting interscale dependency of wavelet coefficients
This paper presents a new method for electrocardiogram (ECG) denoising based on bivariate shrinkage functions exploiting the interscale dependency of wavelet coefficients. Most nonlinear thresholding methods based on wavelet transform denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of ECG signals have significant dependencies. In this paper, we prop...
متن کاملEEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملPerformance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملRobust adaptive directional lifting wavelet transform for image denoising
Recent researches have shown that the adaptive directional lifting (ADL) can represent edges and textures in images effectively. This makes it possible to separate noise from image signal distinctly in image denoising. However, a key issue named orientation estimation for ADL becomes inefficient and error prone in the noised circumstance. The authors propose a robust adaptive directional liftin...
متن کامل